NorMC: a Norm Compliance Temporal Logic Model Checker

Piotr Kaźmierczak, Truls Pedersen, Thomas Ågotnes
Bergen University College and University of Bergen
Norway

PAMT symposium, May 2014, Bergen
Outline

• Why model checking norms?
• Why Haskell?
• How is the model checker implemented?
• Proving that two people can pass each other on the street
• Live Demo
Why model checking norms?

- Normative systems are a framework for coordinating multi-agent systems that emerged recently in the literature.

- The starting point is a state-transition model of a multi-agent system, and the goal is to constrain the behavior of the agents in such a way that the global behavior of the system exhibits some desirable properties.

- Such a restriction is called a normative system. The desirable properties are typically represented using a (modal) logical formula; the objective (typically not satisfied in the initial system).
(Linear) Temporal Logic

\[\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid X\varphi \mid F\varphi \mid G\varphi \]
Branching Time
Temporal Logic

$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid AX\varphi \mid AF\varphi \mid AG\varphi \mid EX\varphi \mid EF\varphi \mid EG\varphi \mid A[\varphi U\psi] \mid E[\varphi U\psi]$
Norm Compliance CTL

It’s like temporal logic, only different.

\[\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid AX\varphi \mid AF\varphi \mid AG\varphi \mid EX\varphi \mid EF\varphi \mid EG\varphi \mid A[\varphi U \psi] \mid E[\varphi U \psi] \]
Norm Compliance CTL

It’s like temporal logic, only different.

\[\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid AX\varphi \mid AF\varphi \mid AG\varphi \mid EX\varphi \mid EF\varphi \mid EG\varphi \mid A[\varphi U\psi] \mid E[\varphi U\psi] \mid \langle P \rangle \varphi \]
Norm Compliance CTL

- NCCTL extends the branching-time temporal logic *Computation-Tree Logic* (CTL) with a unary modality $\langle P \rangle$, where P is a coalition predicate, i.e., a possible coalition of groups of agents (coalitions). The meaning of the expression $\langle P \rangle$ is that if any coalition that satisfies P complies with the normative system, then ϕ will hold.
Examples of NCCTL expressions include the following, which are evaluated in the context of a model and a normative system:

- $[\text{supseteq}(C)] \phi$: if any superset of C complies, ϕ will hold (C is sufficient);

- $[\neg \text{geq}(k)] \neg \phi$: at least k agents have to comply for ϕ to hold (the normative system is k-necessary).
Implementing normative systems

An example agent-labeled Kripke structure, where

\(K \not\models A \circ p \)
Implementing normative systems

An example agent-labeled Kripke structure, where

\[K \uparrow(\eta \uparrow \{ b \}) \models A \bigcirc p \]
Why do we need a new model checker?

- Adapting existing CTL model checkers for NCCTL is difficult;
- Verifying properties is difficult even for relatively small models.
Why Haskell?

• Haskell’s syntax is close to mathematics;
• Haskell is especially convenient for handling discrete structures;
• We have the full power of the programming language to describe our models
Why Haskell?

• Because Haskell is free, cross-platform, well-documented and actively developed generic programming language.

• Because it is easy to extend the code of the model checker and adapt it to one’s needs.
Implementation details

```hs
data (Ord s, Eq p) => Kripke p s = Kripke {
  agents :: [Int],
  states :: [s],
  tr :: FODBR s s,
  owner :: (s, s) -> Int,
  valuation :: p -> [s]
}
```

\[K = \langle S, s^0, R, A, \alpha, V \rangle \]

A data structure that represents agent-labeled Kripke models.
Implementation details

check :: (Ord s, Eq p) => (Kripke p s) -> (FODBR s s) -> (Formula p) -> [s]
check mod sys (Prop p) = sort $ (valuation mod) p
check mod sys (Neg f) = (states mod) `nubminus` (check mod sys f)
check mod sys (Disj f f') = (check mod sys f) `nubunion` (check mod sys f')
check mod sys (Conj f f') = (check mod sys f) `nubisect` (check mod sys f')

Model checking. Recursive definition of Sat.
Implementation details

\[
\begin{align*}
\text{check mod sys (EX f)} &= \text{find (backwards mod) (check mod sys f)} \\
\text{check mod sys (EF f)} &= \text{fix ff (check mod sys (EX f)) where} \\
& \quad \text{ff ss} = \text{ss `nubunion` (find $ backwards mod) ss} \\
\text{check mod sys (EG f)} &= \text{fix ff (check mod sys f) where} \\
& \quad \text{ff ss} = \text{ss `nubisect` (find $ backwards mod) ss} \\
\text{check mod sys (EU f f')} &= \text{fix ff (check mod sys f') where} \\
& \quad \text{ff ss} = \text{ss `nubunion` ((find $ backwards mod) ss `nubisect` (check mod sys f))}
\end{align*}
\]

CTL model checking implementation.
Implementation details

$K, \eta, s \models \langle P \rangle \varphi$ iff $\exists C \subseteq A (C \models_{cp} P \text{ and } K \vdash (\eta \upharpoonright C), \eta, s \models \varphi)$

$$\text{sat}(\langle P \rangle \phi) = \bigcup_{C \models_{cp} P} \{ s \in S : K \vdash (\eta \upharpoonright C), \eta, s \models \phi \}$$

```
check mod sys (CD c f) = foldl' nubunion [] $ map (\mod -> (check mod sys f)) $ map (ir mod sys) $ coasGivenCP mod c
```

Model checking the ‘diamond’ coalition predicate.
Is NorMC actually useful?

• YES.

• The code is simple, yet able to handle relatively big models (tested for 62500 states/470596 transitions).

• We managed to find a bug in an example in a published paper.
A simple example
A simple example
A simple example

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>9</td>
</tr>
</tbody>
</table>
exampleModel :: Kripke Prop State
exampleModel = Kripke [0,1] statespace transition owner val

where:

data Property = N | S | E | W | T deriving Eq

type Prop = (Property, Int)
type State = (Int, Int, Int)
Definition of the state space.

$$\text{statespace} ::= \text{[State]}$$
$$\text{statespace} = \{ (p_0, p_1, i) \mid p_0 \leftarrow [0..9], p_1 \leftarrow [0..9], p_0 \neq p_1, i \leftarrow [0, 1] \}$$

$$\text{statespace} = \{ (p_0, p_1, i) \mid p_0 \in \{0, \ldots, 9\} \land p_1 \in \{0, \ldots, 9\} \land p_0 \neq p_1 \land i \in \{0, 1\} \}$$
transition = build [((p0,p1,i), (p0',p1',1-i)) |
 (p0,p1,i) <- statespace,
 p0' <- possibleSteps (i == 0) p0,
 p1' <- possibleSteps (i == 1) p1,
 (p0',p1',1-i) 'elem' statespace]

possibleSteps :: Bool -> Int -> [Int]
possibleSteps False p = [p]
possibleSteps True p = [p-2, p, p+2]++(if even p then [p+1] else [p-1])

Transition relation implementation.
illegal :: FODBR State State
illegal = build [(p0,p1,i),(p0',p1',1-i)] |
 (p0,p1,i) <- statespace,
 (p0',p1',_) <- (find1 (fst transition) (p0,p1,i)),
 p1' == p0' + 2 || if i == 0 then (p0' < 8 && p0 >= p0')
 else (p1' > 1 && p1 <= p1')]

Definition of the normative system.
Live demo

→ NorMC git:(master) ghci ManualSimpleExample.lhs
GHCi, version 7.4.1: http://www.haskell.org/ghc/ :? for help
Loading package ghc-prim ... linking ... done.
Loading package integer-gmp ... linking ... done.
Loading package base ... linking ... done.
[1 of 3] Compiling FODBR (FODBR.hs, interpreted)
[2 of 3] Compiling NCCTL (NCCTL.hs, interpreted)
Ok, modules loaded: ManualSimpleExample, NCCTL, FODBR.

*ManualSimpleExample> initF
Conj (Conj (Prop (T,0)) (Conj (Prop (N,0)) (Prop (W,0)))) (Conj (Prop (S,1)) (Prop (E,1)))

*ManualSimpleExample> goalF
Conj (Prop (E,0)) (Prop (W,1))

*ManualSimpleExample> check exampleModel illegal (Conj initF (af goalF))
[]

*ManualSimpleExample> check exampleModel illegal (CD (GEQ 0) (Conj initF (af goalF)))
[(0,9,0)]
Thank you

The paper and all the source code is available on github: http://pkazmierczak.github.com/NorMC